-3

how can I prove

$$f'(x) = \frac{1}{n} \cdot x^{\left(\frac{1}{n}\right) - 1}$$ when $$f(x) = x^{\frac{1}{n}}$$ by limit definition?

Thank you.

bru1987
  • 2,147
  • 5
  • 25
  • 50

1 Answers1

2

$$\lim_{x\to x_0}\frac{x^{1/n}-x_0^{1/n}}{x-x_0}=\lim_{x\to x_0}\frac{x-x_0}{(x-x_0)\left(\left(x^{1/n}\right)^{n-1}+\left(x^{1/n}\right)^{n-2}x_0+\ldots+\left(x_0^{1/n}\right)^{n-1}\right)}=$$

$$=\frac1{\left(x_0^{1/n}\right)^{n-1}+\left(x_0^{1/n}\right)^{n-2}x_0+\ldots+\left(x_0^{1/n}\right)^{n-1}}=\frac1{n\,x_0^{1-1/n}}=\frac{x_0^{1/n-1}}n$$

Mark Viola
  • 179,405
Timbuc
  • 34,191