How prove that sum $$\frac{1}{\sin^2\frac{\pi}{2n}}+\frac{1}{\sin^2\frac{2\pi}{2n}}+\cdots+\frac{1}{\sin^2\frac{(n-1)\pi}{2n}} =\frac{2}{3}(n-1)(n+1)$$
Asked
Active
Viewed 367 times
3
-
2This will be helpful: http://math.stackexchange.com/questions/544228/is-sum-k-1m-1-frac1-sin2-frack-pim-fracm2-13-true-for-m?rq=1 – Jean-Claude Arbaut Apr 25 '15 at 10:48
1 Answers
2
To develop further on Jean-Claude Arbaut's comment, you'll find here the proof that:
$$\sum_{k=1}^{n-1}{\frac{1}{\sin^2\left(\frac{k\pi}{n}\right)}}=\dfrac{(n-1)(n+1)}{3}$$
All you have to do now, is show that:
$$\sum_{k=1}^{n-1}{\frac{1}{\sin^2\left(\frac{k\pi}{\color{red}{2n}}\right)}}=\color{red}{2}\sum_{k=1}^{n-1}{\frac{1}{\sin^2\left(\frac{k\pi}{\color{red}{n}}\right)}}$$
Demosthene
- 5,420