3

How prove that sum $$\frac{1}{\sin^2\frac{\pi}{2n}}+\frac{1}{\sin^2\frac{2\pi}{2n}}+\cdots+\frac{1}{\sin^2\frac{(n-1)\pi}{2n}} =\frac{2}{3}(n-1)(n+1)$$

user91500
  • 5,606
piteer
  • 6,310

1 Answers1

2

To develop further on Jean-Claude Arbaut's comment, you'll find here the proof that: $$\sum_{k=1}^{n-1}{\frac{1}{\sin^2\left(\frac{k\pi}{n}\right)}}=\dfrac{(n-1)(n+1)}{3}$$ All you have to do now, is show that: $$\sum_{k=1}^{n-1}{\frac{1}{\sin^2\left(\frac{k\pi}{\color{red}{2n}}\right)}}=\color{red}{2}\sum_{k=1}^{n-1}{\frac{1}{\sin^2\left(\frac{k\pi}{\color{red}{n}}\right)}}$$

Demosthene
  • 5,420