Here I have $x\in\mathbb{R}_+$ and $x < 1$.
I would like to evaluate the following sum:
$$\sum_{i=0}^\infty i^nx^i.$$
I know that $$\sum_{i=0}^\infty x^i=\dfrac{1}{1-x}.$$
So I started calculating the derivative of the above formula. I found something like:
$$\sum_{i=0}^\infty i^nx^i=\dfrac{P_n(x)}{(1-x)^{n+1}},$$ where $P_n(x)$ is a polynomial of degree $n$.
$$P_0(x)=1,$$ $$P_1(x)=x,$$ $$P_2(x)=x+x^2,$$ $$P_3(x)=x+4x^2+x^3,$$ $$P_4(x)=x+11x^2+11x^3+x^4,$$ $$P_4(x)=x+26x^2+66x^3+26x^4+x^5,$$ $$\cdots.$$
Is there a general formula for $P_n(x)$?