1

What is an example of a sequence $X_1,X_2,...$ such that $X_n\rightarrow X$ in probability, but $\mathbb{E}(X_n)$ does not converge to $\mathbb{E}(X)$?

1 Answers1

3

Consider for instance: $$ X_n = \begin{cases} n \text { with probability }\frac 1n\\ 0 \text { with probability }1 - \frac 1n\\ \end{cases} $$

  • $P(|X_n| > \epsilon) = \frac 1n\to 0$ hence $X_n\to X = 0$ in probability.
  • $EX_n = \frac 1n\times n + \left(1-\frac 1n\right)\times 0 = 1 \to 1 \neq EX$
mookid
  • 28,236