Let $p,q \in \mathbb{R}$. Show using the comparison test (or limit comparison test) that
$$ \sum\limits_{n=2}^{\infty} \dfrac{1}{n^p \ln(n)^q} $$
converges for $p>1$ and any value of $q$ and that it diverges for $p<1$ and any value of $q$.
My attempt:
I see that for $q \geq 0$ that $\sum\limits_{n=2}^{\infty} \dfrac{1}{n^p \ln(n)^q} \leq \sum\limits_{n=2}^{\infty} \dfrac{1}{n^p}$ which converges for $p>1$.
My trouble is with the case of $q<0$.