I solved it with L'Hospital's Rule, but I had to use it 4 times! Is there any way to avoid it?
-
Find the logarithm, then use finite expansions. – May 11 '15 at 22:18
-
No expansions please, I know how to solve it that way. What I'm looking for is a basic proof. – Chris May 11 '15 at 22:19
-
Anyway we need $\large\lim \limits_{x \to 0}\frac{\frac{\sin x}{x}-1}{x^2}$ – Alexey Burdin May 11 '15 at 22:42
-
@Chris So what is the limit anyway? – Gregory Grant May 11 '15 at 22:53
1 Answers
Can we use some basics: $\lim \limits_{x \to 0} (1+x)^\frac{1}{x} = e$ and $\lim \limits_{x \to 0} \frac{\sin x}{x} = 1$?
So, we separate $1$: $$\large\lim \limits_{x \to 0} \left(\frac{\sin x}{x}\right)^\frac{1}{1-\cos x} = \lim \limits_{x \to 0} \left(1+\frac{\sin x}{x}-1\right)^\frac{1}{1-\cos x}
= \lim \limits_{x \to 0} \left(\left(1+\frac{\sin x}{x}-1\right)^\frac{1}{\frac{\sin x}{x}-1}\right)^\frac{\frac{\sin x}{x}-1}{1-\cos x}=e^{\lim \limits_{x \to 0}\frac{\frac{\sin x}{x}-1}{1-\cos x}}, $$
$$\lim \limits_{x \to 0}\frac{\frac{\sin x}{x}-1}{1-\cos x} =
\lim \limits_{x \to 0}\frac{\frac{\sin x}{x}-1}{2\left(\frac{x}{2}\right)^2}\cdot \frac{2\left(\frac{x}{2}\right)^2}{2\sin^2\left(\frac{x}{2}\right)} = 2\lim \limits_{x \to 0}\frac{\sin x-x}{x^3},$$
$\lim \limits_{x \to 0}\frac{\sin x-x}{x^3}$ is here.
- 5,214