5

Finding $$\mu=\prod_{k=1}^{n-1}\cos\frac{2k\pi}n$$ I thought $$z^n=1=e^{i2\pi}\implies z=\cos\frac{2k\pi}n+i\sin\frac{2k\pi}n\quad k\in\{1,2,...,n-1\}$$ Now we have: $$\begin{align}\mu&=\prod_{k=1}^{n-1}\frac{z+\bar z}{2}\\&=\prod_{k=1}^{n-1}\frac{e^{i\theta}+ e^{-i\theta}}{2}\\&=\frac1{2^{n-1}}\prod_{k=1}^{n-1}e^{-i\theta}\prod_{k=1}^{n-1}(1+ e^{2i\theta})\\ \\&=\frac1{2^{n-1}}e^{-i\frac{2\pi}n(1+2+...(n-1))}\prod_{k=1}^{n-1}(1+ e^{2i\theta})\\ \\&=\frac1{2^{n-1}}e^{-i(n-1)\pi}\prod_{k=1}^{n-1}(1+ e^{2i\theta})\\ \\&=\frac1{2^{n-1}}(-1)^{n-1}\prod_{k=1}^{n-1}(1+ e^{2i\theta})\end{align}$$ Now since $(e^{2i\theta})^{n/2}=1$: $$\Theta(z)=z^{n/2}-1=\prod_{k=1}^{n-1}(z-e^{2i\theta})$$ At $(-1)$: $$\Theta(-1)=(-1)^{n-1}\prod_{k=1}^{n-1}(1+e^{2i\theta})=(-1)^{n/2}-1=e^{in\pi/2}-1=i\sin n\pi/2$$ It turns out something imaginary (but it's not clearly) also I would like to work on: $$\nu=\prod_{k=1}^{n-1}\sin\frac{2k\pi}n=\prod_{k=1}^{n-1}\frac{e^{i\theta}- e^{-i\theta}}{2i}$$ Similarly: $$\nu=\frac1{(2i)^{n-1}}(-1)^{n-1}\prod_{k=1}^n(e^{2i\theta}-1)=\frac1{(2i)^{n-1}}(-1)^{n-1}(-1)^{n-1}\Theta(1)=\frac1{2^{n-1}i\sin (n-1)\pi/2}0=0$$ But this is also not zero? The earlier $\eta$ is obviously: $$\prod_{k=1}^{n-1}\tan\frac{2k\pi}n=\eta=\frac{\mu}{\nu}$$

RE60K
  • 17,716

1 Answers1

7

$$ \begin{align} 2^{n-1}\prod_{k=1}^{n-1}\cos\left(\frac{2k\pi}n\right) &=\prod_{k=1}^{n-1}\left(1+e^{4\pi ik/n}\right)e^{-2\pi ik/n}\\ &=(-1)^{n-1}\left[\prod_{k=1}^{n-1}\left(-z^2+e^{4\pi ik/n}\right)\right]_{\large z=i}\\ &=\left[\prod_{k=1}^{n-1}\left(z^2-e^{4\pi ik/n}\right)\right]_{\large z=i}\\ &=\left[\prod_{k=1}^{n-1}\left(z-e^{2\pi ik/n}\right)\prod_{k=1}^{n-1}\left(z+e^{2\pi ik/n}\right)\right]_{\large z=i}\\[3pt] &=\left[\frac{z^n-1}{z-1}\frac{z^n-(-1)^n}{z+1}\right]_{\large z=i}\\[6pt] &=\frac{(i^n-1)(i^n-(-1)^n)}{-2}\\[9pt] &=\frac{2(-1)^n-i^n(1+(-1)^n)}{-2}\\[12pt] &=\cos(n\pi/2)-(-1)^n \end{align} $$ Therefore, $$ \begin{align} \prod_{k=1}^{n-1}\cos\left(\frac{2k\pi}n\right) &=\frac{\cos(n\pi/2)-(-1)^n}{2^{n-1}}\\[3pt] &=\frac{\cos(n\pi/2)-\cos(n\pi)}{2^{n-1}}\\[6pt] &=\frac{\sin(n\pi/4)\sin(3n\pi/4)}{2^{n-2}} \end{align} $$

robjohn
  • 345,667