More generally,
and with no originality,
let $f$ be a function with
$f'(x) \ge 0$
and $f(x) > 0$
Then
$f(n)
\le \int_n^{n+1} f(x) dx
\le f(n+1)
$.
(If
$f'(x) \le 0$
and $f(x) > 0$,
then
the inequalities are reversed
so
$f(n)
\ge \int_n^{n+1} f(x) dx
\ge f(n+1)
$.)
Summing for
$n = 1$ to $N-1$,
$\sum_{n=1}^{N-1}f(n)
\le \int_1^{N} f(x) dx
\le \sum_{n=1}^{N-1} f(n+1)
$
or
$ f(0)
\le \sum_{n=1}^{N}f(n)-\int_1^{N} f(x) dx
\le f(N)
$.
Therefore,
if
$\frac{f(N)}{\int_1^{N} f(x) dx}
\to 0
$,
since
$\frac{\int_0^{1} f(x) dx}{\int_1^{N} f(x) dx}
\to 0
$,
$\frac1{\int_0^{N} f(x) dx}\sum_{n=1}^{N}f(n)
\to 1
$.
Letting
$f(x)
=x^p
$
with $p \ge 1$,
$\frac{p+1}{N^{p+1}}\sum_{n=1}^{N}n^p
\to 1
$
or
$\frac1{N}\sum_{n=1}^{N}\left(\frac{n}{N}\right)^p
\to \frac1{p+1}
$.