The answer I got by hand is not the same to the one I found using a spreadsheet.
$\displaystyle S = 1 + \frac{3}{4} + \frac{7}{16} + \frac{15}{64} + \frac{31}{256} + \ldots$
$\displaystyle \frac{1}{4}S = \hspace{8.5pt} \frac{1}{4} + \frac{3}{16} + \frac{7}{64} + \frac{15}{256} + \ldots$
$\displaystyle \frac{3}{4}S = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \ldots \qquad \leftarrow S- \frac{1}{4}S$
For the Infinite Sum on the RHS $\displaystyle \left(S = \frac{a}{1-r}\right)$:
$\displaystyle a = 1$
$\displaystyle r = \frac{1}{2}$
Then
$\displaystyle \frac{3}{4}S = \frac{1}{1-\frac{1}{2}}$
$\displaystyle \frac{3}{4}S = 2$
$\displaystyle S = \frac{8}{3}$
Using Excel the answer is $\displaystyle \frac{5}{3}$, but I don't know where is the issue.
Thanks!!