Let $\mathbb{Q}(\sqrt{d}) = \{a + b \sqrt{d}: a,b \in \mathbb{Q} \}.$ Show that $\mathbb{Q}(\sqrt{d})$ is a field.
Everything seems obvious except for existence of inverses in the multiplicative group of $\mathbb{Q}(\sqrt{d}).$
Suppose $\alpha \in \mathbb{Q}(\sqrt{d}) \Longrightarrow \alpha = a + b \sqrt{d}.$ To prove that $\mathbb{Q}(\sqrt{d})$ contains multiplicative inverses, observe that for a non-square $d$ and $a - b\sqrt{d} \ne 0$ one has $$\frac{1}{\alpha} = \frac{1}{a+b\sqrt{d}} \cdot \frac{a - b \sqrt{d}}{a - b \sqrt{d}} = \frac{a}{a^2-b^2d}- \frac{b}{a^2-b^2d} \sqrt{d}.$$
If $a,b \in \mathbb{Q} \Longrightarrow a^2,b^2 \in \mathbb{Q} \Longrightarrow b^2 d \in \mathbb{Q}$ (since $d \in \mathbb{Z}$) $\Longrightarrow a^2-b^2d \in \mathbb{Q} \Longrightarrow \frac{a}{a^2-b^2d}, \frac{b}{a^2-b^2d} \in \mathbb{Q}.$ Hence $\frac{1}{\alpha} \in \mathbb{Q}(\sqrt{d}).$
Is this correct?