-3

Assume two natural numbers $m,n$ are coprime (this means $(m,n)=1$) such that for each $a ,b \in G$ we have $a^m b^m = b^m a^m$ and $a^n b^n = b^n a^n$. Then $G$ is an abelian group.

user26857
  • 52,094

1 Answers1

-1

Hint: $(m,n)=1$ then there exist $c,d\in \mathbb{Z}$ s.t. $cm+dn=1$. Thus $$gh=g^{cm+dn}h^{cm+dn}=g^{cn}g^{dm}h^{cm}h^{dn}=\cdots=h^{cm+dn}g^{cm+dn}=hg.$$ because $$(g^mh^n)^{cm}=g^m(h^ng^m)^{cm-1}h^n=g^m(h^ng^m)^{cm}g^{-m}h^{-n}h^n=g^m((h^ng^m)^{c})^mg^{-m}=(h^ng^m)^{cm}$$ Similarly, $(g^mh^n)^{dn}=(h^ng^m)^{dn}$ and so, $h^ng^m=g^mh^n$.

user26857
  • 52,094
Farhad
  • 477