Doing it the way you originally started gives us $$-3+\left(-1+2\cos ^2\left(x\right)\right)^22+2\left(-3\cos \left(x\right)+4\cos ^3\left(x\right)\right)^2+2\cos ^2\left(x\right)=0$$ Now let $\cos x = u$ and simplify to get $$32u^6 - 40u^4 + 12u^2 - 1 = 0$$ which is simply a cubic in $u^2$ and can be factorised as $$4\left(\frac{1}{2}+u\right)\left(-\frac{1}{2}+u\right)\left(8u^4-8u^2+1\right)=0$$ giving us $u = \pm \frac{1}{2}$ and we need to solve the remaining quartic(which is a quadratic in $u^2$) to get $$u=-\frac{\sqrt{2-\sqrt{2}}}{2},\:u=\frac{\sqrt{2-\sqrt{2}}}{2},\:u=-\frac{\sqrt{2+\sqrt{2}}}{2},\:u=\frac{\sqrt{2+\sqrt{2}}}{2}$$ as our other solutions.
So we have:
$$\cos \left(x\right)=\frac{1}{2}\implies x=\frac{\pi }{3}+2\pi n,\:x=\frac{5\pi }{3}+2\pi n$$
$$\cos \left(x\right)=-\frac{1}{2}\implies x=\frac{2\pi }{3}+2\pi n,\:x=\frac{4\pi }{3}+2\pi n$$
$$\cos \left(x\right)=-\frac{\sqrt{2+\sqrt{2}}}{2} \implies x=2\pi n-\arccos \left(-\frac{\sqrt{2+\sqrt{2}}}{2}\right), \\ x=2\pi n+\arccos \left(-\frac{\sqrt{2+\sqrt{2}}}{2}\right)$$
$$\cos \left(x\right)=-\frac{\sqrt{2-\sqrt{2}}}{2}\implies x=2\pi n-\arccos \left(-\frac{\sqrt{2-\sqrt{2}}}{2}\right),\\ x=2\pi n+\arccos \left(-\frac{\sqrt{2-\sqrt{2}}}{2}\right)$$
$$\cos \left(x\right)=\frac{\sqrt{2-\sqrt{2}}}{2}\implies x=2\pi n-\arccos \left(\frac{\sqrt{2-\sqrt{2}}}{2}\right),\\ x=2\pi n+\arccos \left(\frac{\sqrt{2-\sqrt{2}}}{2}\right)$$
$$\cos \left(x\right)=\frac{\sqrt{2+\sqrt{2}}}{2}\implies x=2\pi n-\arccos \left(\frac{\sqrt{2+\sqrt{2}}}{2}\right),\\ x=2\pi n+\arccos \left(\frac{\sqrt{2+\sqrt{2}}}{2}\right)$$