I have seen and understand the delta-epsilon proof of the limit of $x^2$ for $x\to2$, such as explained here: https://www.youtube.com/watch?v=gLpQgWWXgMM
Now I am wondering, is there also another way? How about this:
Verify that $\lim x^2=4$ (for $x\to2$)
STEP A: Express epsilon in terms of $x$: \begin{align} |x^2-4| &< \varepsilon\\ -\varepsilon &< x^2-4 < \varepsilon\\ 4-\varepsilon &< x^2 < 4+\varepsilon\\ \sqrt{4-\varepsilon} &< x < \sqrt{4+\varepsilon} \end{align}
STEP B: Express delta in terms of $x$ \begin{align} |x-2| &< \delta\\ -\delta &< x-2 < \delta\\ 2-\delta &< x < 2+\delta \end{align}
STEP C: Now we can express $\delta$ in terms of $\varepsilon$ hence proving the limit.
If we take $\delta=\min\{-2+\sqrt{4+\varepsilon},2-\sqrt{4-\varepsilon}\}$ then the limit is proven
Did I make any mistake? Thanks! Cheers!