I was reading this post and I got really curious about that expression. I mean, I'd like to compute the limit: $$ \lim_{x\to\infty} n^{-n^2} \prod_{k=1}^n (k+n)^{\frac{1}{n}} $$
What I tried: following the advice, I took logarithms.
$$ \lim_{x\to\infty} n^{-n^2} \prod_{k=1}^n (k+n)^{\frac{1}{n}} \Rightarrow \ln\left ( \lim_{x\to\infty} n^{-n^2} \prod_{k=1}^n (k+n)^{\frac{1}{n}} \right ) = n^2\cdot\ln\left ( \frac{1}{n} \right )\cdot\frac{1}{n}\cdot\sum_{k=1}^{n} \ln \left ( 1 + \frac{n}{k} \right ) $$
As $ \lim_{n\to\infty} \frac{1}{n}\cdot\sum_{k=1}^{n} \ln \left ( 1 + \frac{n}{k} \right ) = \int_{1}^{2} \ln(1+x) dx $, then:
$$ \lim_{n\to\infty} n^2\cdot\ln\left ( \frac{1}{n} \right )\cdot\underbrace{\int_{1}^{2} \ln(1+x) dx}_{\sim 0.9 >0} = -\infty $$
Am I right?