From the post Evaluating limit (iterated sine function) and some discussions inside, one can collect the following three limits \begin{eqnarray*} \lim_{x\rightarrow 0 }\frac{\sin _{n}x}{x} &=&1 \\ \lim_{x\rightarrow 0}\frac{x-\sin _{n}x}{x^{3}} &=&\frac{n}{6} \\ \lim_{x\rightarrow 0}\frac{\sin _{n}x-x+\frac{n}{6}x^{3}}{x^{5}} &=&% \frac{n^{2}}{24}-\frac{n}{30}. \end{eqnarray*} where $\sin _{n}x=\sin (\sin \cdots (\sin x)),\ n$ times composition.
So the next question would be, what is the following limit \begin{equation*} \lim_{x\rightarrow 0}\frac{\sin _{n}x-x+\frac{n}{6}x^{3}-\left( \frac{% n^{2}}{24}-\frac{n}{30}\right) x^{5}}{x^{7}} \end{equation*} and what are those corresponding limits after order 7 $?$