Suppose a set of elements of finite size.
E.g.:
$X = \left\lbrace a,b,c,d,e,f,g \right\rbrace$
There are several ways to partition $X$.
E.g:
$P_1 = \left\lbrace \left\lbrace a,b \right\rbrace, \left\lbrace c \right\rbrace, \left\lbrace d,e,f,g \right\rbrace \right\rbrace$
$P_2 = \left\lbrace \left\lbrace c,f,g \right\rbrace, \left\lbrace a,e \right\rbrace, \left\lbrace b,d \right\rbrace \right\rbrace$
$P_3 = \left\lbrace \left\lbrace a,b,c \right\rbrace, \left\lbrace d,e,f,g \right\rbrace \right\rbrace$
How can one measure the similarity of those partitionings?
In this example, $P_1$ and $P_3$ are similar.
I think I can measure similarity of individual partitions (e.g. using [Jaccard similarity](https://en.wikipedia.org/wiki/Jaccard_index $\rightarrow$ $J(\left\lbrace a,b \right\rbrace, \left\lbrace a,b,c \right\rbrace)=\frac{2}{3}$), but I have no idea on how to use this information to find which partitionings are similar.
Any idea?
Hint:
Given a pair of partitionings $P_1$ and $P_2$, we can construct a weighted bipartite graph from elements of $P_1$ to elements of $P_2$, that is $G=\left\langle P_1 \cup P_3, P_1 \times P_3 \right\rangle$, where each weight is:
$w_{i,j} = J(p_{1,i},p_{2,j}) = \frac{\left\vert\ p_{1,i}\ \cap\ p_{2,j}\ \right\vert}{\left\vert\ p_{1,i}\ \cup\ p_{2,j}\ \right\vert}$
where $p_{1,i} \in P_1$ and $p_{2,j} \in P_2$
The two most similar partitionings are the solution to the maximum weighted bipartite matching problem.
Sorry if my vocabulary is not correct, my background is not in Mathematics.