0

I couldn't get an idea how to get this summation?Can you help me please!!

satyatech
  • 517

1 Answers1

3

Note that (for $k\geq 2$) $$ \frac{1}{k^2-k}=\frac{1}{k(k-1)}=\frac{1}{k-1}-\frac{1}{k} $$ so that $$ S_n\equiv\sum_{k=2}^n\frac{1}{k^2-k}=\sum_{k=2}^n\left(\frac{1}{k-1}-\frac{1}{k}\right)=\frac{1}{2-1}-\frac{1}{n}=1-\frac{1}{n}\cdot $$ What then can you say about $\lim_{n\to\infty}S_n$?

Kim Jong Un
  • 14,794
  • 1
  • 24
  • 49