2

$$\int_0^1 \frac{f(x)} {f(x)+f(1-x)}dx$$ Thank you very much

Paolo
  • 935
Oner
  • 65
  • Same trick as here: http://math.stackexchange.com/questions/82489/how-can-i-calculate-int-0-pi-2-frac-sin3-t-sin3-t-cos3-tdt – Hans Lundmark Jul 10 '15 at 07:24

2 Answers2

3

Let's try substitution $y=1-x$: $$ I=\int_0^1 \frac{f(x)}{f(x)+f(1-x)}dx=\int_0^1 \frac{f(1-y)}{f(1-y)+f(y)}dy; $$ hence, $$2I=\int_0^1 \frac{f(x)+f(1-x)}{f(x)+f(1-x)}dx=1\Longrightarrow I=\frac12$$

2

use $x\to 1-x$: \begin{align} I&=\int_0^1 \frac{f(x)} {f(x)+f(1-x)}dx\\ &=\int_0^1 \frac{f(1-x)} {f(x)+f(1-x)}dx \end{align} hence \begin{align} 2I=I+I&=\int_0^1 \frac{f(x)} {f(x)+f(1-x)}dx+\int_0^1 \frac{f(1-x)} {f(x)+f(1-x)}dx\\ &=\int_0^1 dx=1 \end{align} therefore $I=\frac12$.

Math-fun
  • 9,507