The question says one only needs the AM-GM inequality, I've been stuck here for more than one hour.
$$(a_i + b_i) \gt a_i$$ and $$a_i + b_i \gt b_i$$
therefore,
$$ \sqrt[3]{(a_1+b_1)(a_2+b_2)(a_3+b_3)} > \sqrt[3]{a_1a_2a_3} $$
and
$$ \sqrt[3]{(a_1+b_1)(a_2+b_2)(a_3+b_3)} > \sqrt[3]{b_1b_2b_3} $$
so
$$ \sqrt[3]{(a_1+b_1)(a_2+b_2)(a_3+b_3)} > \frac{\sqrt[3]{a_1a_2a_3} + \sqrt[3]{b_1b_2b_3}}{2} $$
This was my best lower bound.