0

Evaluate the following definite integral by letting $u= \pi/2 - x$. The integral is $$\int_0^{\pi/2} \frac{\sin(x)}{\cos(x)+\sin(x)}dx.$$

Plutoro
  • 22,730
  • 3
  • 41
  • 71
Dray
  • 1

2 Answers2

1

Your substitution yields $$I = \int_0^{\pi/2}\frac{\cos u}{\sin u + \cos u} \, \mathrm{d}u = \int_0^{\pi/2}\frac{\cos x}{\sin x + \cos x} \, \mathrm{d}x$$

What can you say about $I + I = 2I$?

Hint: $2I = \frac{\pi}{2} \implies I = \frac{\pi}{4}$.

Zain Patel
  • 16,802
1

The integral $I$ is given by

$$\begin{align} I&=\int_0^{\pi/2} \frac{\sin x}{\sin x+\cos x}\,dx \\\\\tag 1 &=\int_0^{\pi/2}\left(1-\frac{\cos x}{\sin x+\cos x}\right)\,dx\\\\ &=\pi/2-\int_0^{\pi/2} \frac{\cos x}{\sin x+\cos x}\,dx \tag 2 \end{align}$$

Enforce the substitution $x\to \pi/2 -x$ in $(1)$. Then, we have

$$I=\int_0^{\pi/2} \frac{\cos x}{\sin x+\cos x}\,dx \tag 3$$

Comparing $(2)$ and $(3)$, we see that

$$\begin{align} I&=\pi/2-I\\\\ &\implies I=\pi/4 \end{align}$$

and we are done!

Mark Viola
  • 179,405