1

It is given that-

(1) $0<\alpha,\beta<90$.

(2) $\sin^2\alpha+\sin^ 2\beta=\sin(\alpha+\beta).$

Prove that $\alpha + \beta=\frac {\pi}{2}$

Snehil Sinha
  • 1,179
  • 1
    Is it even possible to satisfy (1) and (2)? – Chris Culter Jul 25 '15 at 03:43
  • No, $\sin 30^\circ +\sin 60^\circ=(1+\sqrt3)/2$ is greater than $\sin 90^\circ=1$. How are you checking the validity of the statement? – Chris Culter Jul 25 '15 at 03:51
  • 1
    I am extremely sorry.Actually I mistyped the question.Please refer to the original edited question. – Snehil Sinha Jul 25 '15 at 03:53
  • Ah. At this point, you might be better off leaving this question as it was and asking a separate question. It's up to you... – Chris Culter Jul 25 '15 at 04:03
  • @ChrisCulter Will the new question not be marked as duplicate? – Snehil Sinha Jul 25 '15 at 04:04
  • If you roll back this question so that it reads $\sin\alpha + \sin\beta$ again, the new question shouldn't be marked as a duplicate. The other benefits are that Michael Galuza's answer to this question will still be relevant, and the new question will get more visibility because it won't look like it's been answered already. – Chris Culter Jul 25 '15 at 04:06

5 Answers5

5

NOTE: it's answer to initial question (without squares), downvoters.

It's very strightforward. $$ \sin\alpha + \sin\beta = 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}\\ \sin(\alpha + \beta) = 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha+\beta}{2}\\ \sin\alpha + \sin\beta = \sin(\alpha + \beta)\Longrightarrow \sin\frac{\alpha+\beta}{2} = 0\text{ or }\cos\frac{\alpha-\beta}{2} = \cos\frac{\alpha+\beta}{2} $$ In the first case $$ \sin\frac{\alpha+\beta}{2} = 0\Longrightarrow \alpha + \beta = \pi n,0 < \alpha + \beta < \pi; $$ there ares no solutions. If $\alpha,\beta \color{red}\le \pi/2$, then $\alpha + \beta = \pi$.

In the second case, $$\cos\frac{\alpha-\beta}{2} = \cos\frac{\alpha+\beta}{2} \Longrightarrow 2\sin\frac\alpha2\sin\frac\beta2 = 0, $$ and $\alpha=2\pi k$ or $\beta=2\pi m$, $k,m\in\mathbb Z$.

Anyway, your statement is false.

2

We have -

$\sin^2\alpha+\sin^2\beta=\sin(\alpha+\beta)$

$\implies \sin\alpha\cos\beta+cos\alpha\sin\beta=\sin^2\alpha+\sin^2\beta$

$\implies\displaystyle\sin\alpha(\cos\beta-\sin\alpha)+\sin\beta(\cos\alpha-\sin\beta)=0$

$\implies2 \sin\alpha\cdot \sin\left({\frac{\beta+\frac \pi2-\alpha}{2}}\right)\cdot \sin\left({\frac {\frac{\pi}{2}-\alpha-\beta}{2}}\right)+2\sin\beta\cdot \sin\left({\frac{\alpha+\frac{\pi}{2}-\beta}{2}}\right)\cdot \sin\left({\frac{\frac{\pi}{2}-\beta-\alpha}{2}}\right)=0$

$\implies\sin\alpha\cdot \sin\left(\frac{\pi}{4}+\frac{\beta-\alpha}{2}\right)\cdot \sin\left(\frac{\pi}{4}-\frac{\alpha+\beta}{2}\right)+\sin\beta\cdot \sin\left(\frac{\pi}{4}+\frac{\alpha-\beta}{2}\right)\cdot \sin\left(\frac{\pi}{4}-\frac{\alpha+\beta}{2}\right)=0$

$\implies\sin\left(\frac{\pi}{4}-\frac{\beta+\alpha}{2}\right)=0$

$\implies\frac{\pi}{4}-\frac{\alpha+\beta}{2}=0$

$\implies \alpha+\beta=\frac{\pi}{2}$

mja
  • 1,389
Snehil Sinha
  • 1,179
1

Equation $(2)$ says that $$\sin\alpha(\sin\alpha-\cos\beta)=\sin\beta(\cos\alpha-\sin\beta)\ .$$ With $\beta:={\pi\over2}-\beta'$ we therefore have $$\sin\alpha(\sin\alpha-\sin\beta')=\sin\beta(\cos\alpha-\cos\beta')\ .$$ When $\alpha\ne\beta'$ the two sides of the last equation have different signs.

0

Its given (by you) that ${sin}^2\alpha+{sin}^2\beta={sin}(\alpha+\beta) ..........eqn (1)$

But ${sin}^2\beta=1-{cos}^2\beta$

Slotting the identity into $eqn(1)$ gives: $${sin}^2\alpha+(1-{cos}^2\beta)={sin}(\alpha+\beta) $$ $$1-({cos}^2\beta-{sin}^2\alpha)={sin}(\alpha+\beta)$$ $$1-{cos}(\alpha+\beta)={sin}(\alpha+\beta)$$ $${sin}(\alpha+\beta)+{cos}(\alpha+\beta)=1$$ Let $(\alpha+\beta)=A$ Therefore $sinA+cosA=1$

Solving this further by squaring both sides gives: $${sin}^2A+{cos}^2A+2sinAcosA=1$$ $$2sinAcosA=0$$ Therefore $sinA=0$ or $cos A=0$

This gives $A=0$ or $A=\frac{\pi}{2}$

Recall that $(\alpha+\beta)=A$

Therefore $\alpha+\beta=0$ or $\alpha+\beta=\frac{\pi}{2}$

Obinoscopy
  • 769
  • 7
  • 16
0

Using Prove that $\cos (A + B)\cos (A - B) = {\cos ^2}A - {\sin ^2}B$,

$$\sin^2A+\sin^2B=1-(\cos^2A-\sin^2B)=1-\cos(A+B)\cos(A-B)$$

$$\implies\sin(A+B)+\cos(A+B)\cos(A-B)=1$$

Using Weierstrass substitution for $\sin(A+B),\cos(A+B)$ and setting $\tan\dfrac{A+B}2=t,$

$$[1+\cos(A-B)]t^2-2t+1-\cos(A-B)=0$$

Using Weierstrass substitution for $\cos(A-B),$

$$t=1,\tan^2\dfrac{A-B}2$$

If $\tan\dfrac{A+B}2=1,\dfrac{A+B}2=n\pi+\dfrac\pi2\iff A+B=?$ where $n$

But I'm not sure about $\tan\dfrac{A+B}2=\tan^2\dfrac{A-B}2$