I'm stuck in this limit:
$$\lim_{x\to 0}\frac{x(e^x-1)}{\cos x-1}$$
I tried to solve it using special limits, so:
$$\lim_{x\to 0}\frac{x(e^x-1)}{\cos x-1}=$$
$$=\lim_{x\to 0}(e^x-1)\frac{x(\cos x+1)}{(\cos x-1)(\cos x+1)}=$$
$$=\lim_{x\to 0}-\frac{x}{\sin^2 x}(e^x-1)(\cos x+1)=$$
$$=\lim_{x\to 0}-\frac{x}{\sin x}\cdot\frac{e^x-1}{\sin x}\cdot(\cos x+1)$$
I know that $\lim_{x\to 0}\left(\frac{x}{\sin x}\right)=1$
I know also the special limit $\lim_{x\to 0}\left(\frac{e^x-1}{x}\right)=1$
My question is: can I intend $\lim_{x\to 0}\left(\frac{e^x-1}{\sin x}\right)$ equal to $\lim_{x\to 0}\left(\frac{e^x-1}{x}\right)$ because $x$ and $\sin x$ tend both to $0$ for ${x\to 0}$?
If not, how can I solve my limit, without series or something difficult?
Thank you!