After making the substitution $u = \text{arctanh}(x)$, we could use the Laplace transform $$\int_{0}^{\infty} \cos(ax) \, e^{-bx} \, dx = \frac{b}{a^{2}+b^{2}} \, , \, \text{Re} (b) >0 $$
and then switch the order of integration.
Specifically,
$$ \begin{align} \int_{-\infty}^{\infty} \frac{\text{sech}^{2}(u)}{4u^{2} + \pi^{2}} \, du &= \frac{1}{\pi} \int_{-\infty}^{\infty} \text{sech}^{2}(u) \int_{0}^{\infty} \cos(2ut)\, e^{- \pi t} \, dt \, du \\ &= \frac{1}{\pi} \int_{0}^{\infty} e^{- \pi t} \int_{-\infty}^{\infty} \text{sech}^{2} (u) \cos(2tu) \, du \, \ dt. \end{align}$$
The inside integral is basically the second Fourier transform that Ron Gordon uses in his answer.
A relatively quick way to evaluate it is to integrate the complex function $f(z) = \text{sech}^{2}(z) \, e^{2itz}$ around a rectangular contour in the upper half-plane of height $\pi$ and use the fact that $\text{sech}^{2} (z)$ is $i \pi$-periodic.
Doing so we get
$$\begin{align} \int_{-\infty}^{\infty} \text{sech}^{2}(u) \, e^{2itu} \, du - \int_{-\infty}^{\infty} \text{sech}^2(u) \, e^{2it(u+ i \pi)} \, du &= 2 \pi i \, \text{Res}[f(z), i \pi /2] \\ &= 2 \pi i \, \text{Res} [f(z+ i \pi/2), 0] \\ &= 2 \pi i \, \text{Res} \left[-\text{csch}^{2}(z) e^{2i tz} e^{-\pi t} ,0 \right] \\ &= 2 \pi i \left(-2ite^{- \pi t} \right) \end{align} $$
since $\text{csch}^{2}(z) = \frac{1}{z^{2}} + \mathcal{O}(1).$
Then combining the two integrals on the right, we get
$$ \int_{-\infty}^{\infty} \text{sech}^{2}(x) \, e^{2itu} \, du = \int_{-\infty}^{\infty} \text{sech}^{2}(x) \cos(2tu) \, du = 2 \pi t \, \frac{2 \, e^{- \pi t}}{1-e^{- 2 \pi t}} = 2 \pi t \, \text{csch} (\pi t). $$
(I couldn't' think of an approach that avoided complex analysis entirely.)
Therefore,
$$ \int_{-\infty}^{\infty} \frac{\text{sech}^{2}(u)}{\pi^{2}+4u^{2}} \, du = 2 \int_{0}^{\infty} t \, \text{csch} (\pi t) \, e^{- \pi t}\, dt. $$
After making the substitution $w = 2t$, we end up with the same integral that results from using Parseval's theorem. You can refer to Ron Gordon's answer to complete the evaluation.