suppose the sequence $a_n=\sqrt[n]{n}$
it is easy to see that $a_n$ converges to $1$
now not that $a_3 $is the biggest
$$a_1=1 ,a_2=\sqrt{2} ,a_3=\sqrt[3]{3} ,a_4=\sqrt[4]{4} ,a_5=\sqrt[5]{5} ,... $$
let's see again :
$$a_1=1 ,{\color{Red} {a_2=\sqrt{2}}} ,a_3=\sqrt[3]{3} ,{\color{Red}{a_4=\sqrt[4]{4}=\sqrt{2}}} ,a_5=\sqrt[5]{5} ,... $$ it means $$1=a_1 <a_2 <{\color{Red} {a_3}} >a_4>a_5 >... \lim_{n \to \infty }\sqrt[n]{n}=1\\because \\a_2=a_4$$
$$a_2>a_1 ,\sqrt{2}=1.41 >1\\a_3>a_2 :\sqrt[3]{3}=\sqrt[6]{3^2} >\sqrt[2]{2}=\sqrt[6]{2^3}\\a_2=a_4$$ until now $a_3$ is greatest
$$a_3 >a_6 :becuase :\sqrt[3]{3}=\sqrt[6]{9} >\sqrt[6]{6}=a_6 $$
$$a_3 >a_7 :becuase :\sqrt[3]{3}=\sqrt[21]{3^7} >\sqrt[21]{7^3}=a_7 $$ it seems $a_3$ is maximum