I am not finding a short online summary of the composition of two binary quadratic forms, as done by Dirichlet. Also, the edition of Cox that I have has a typo, corrected in the second edition (2013), here it is.
Given $\gcd(a,a',B) = 1,$ define
$$ X = xz-Cyw, $$
$$ Y = axw + a'yz + B yw, $$ then
$$ (a x^2 + B xy + a'C y^2) (a' z^2 + B zw + aC w^2) = aa'X^2 + B XY + C Y^2 $$
which you ought to check!
Here are the binary forms (primitive) of discriminant $-284$
Discr -284 = 2^2 * 71 class number 7
all
284: < 1, 0, 71>
284: < 3, -2, 24>
284: < 3, 2, 24>
284: < 5, -4, 15>
284: < 5, 4, 15>
284: < 8, -2, 9>
284: < 8, 2, 9>
The first few primes integrally represented by $3x^2 + 2xy+24y^2$ are
$$ 3, 29, 89, 103, 109, 151, 157, 191, $$ and below, we show how to represent each $p^7$ once we have $x,y.$
compared with $-71$ primitive, where this time a form represents the prime $2$
Discr -71 = 71 class number 7
all
71: < 1, 1, 18>
71: < 2, -1, 9>
71: < 2, 1, 9>
71: < 3, -1, 6>
71: < 3, 1, 6>
71: < 4, -3, 5>
71: < 4, 3, 5>
ummmm, $h(-71) = h(-284) = 7.$ Since $4 \cdot 3^7 - 284 = 92^2,$ the principal form is $\langle 1, 92, 2187\rangle.$ The class group is cyclic, everything is a power of $\langle 3, 92, 729 \rangle$ under Dirichlet's version of Gauss composition. All I am doing is repeatedly multiplying by $3 x^2 + 92 xy + 729 y^2,$ the rules for composition eventually give the quadratic form $\langle 2187, 92, 1 \rangle$ with variables which are homogeneous degree seven in the original $x,y.$ Oh, any form that represents $1$ is $SL_2 \mathbb Z$ equivalent to the principal form. At the very end, I show how to write $t^2 + 71 z^2 = (3 x^2 + 92 xy + 729 y^2)^7. $ I am showing the whole gp-pari session, there is nothing difficult once we get that fortunate expression for the coefficients of a generator of the group.
a=3; a1=3; b=92; c=243; z = x; w = y;
zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
? a=3; a1=3; b=92; c=243; z = x; w = y;
? zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
? z
%3 = x^2 - 243*y^2
? w
%4 = 6*y*x + 92*y^2
?
a1 = 9; c = 81; zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
? a1 = 9; c = 81; zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
? z
%6 = x^3 - 729*y^2*x - 7452*y^3
? w
%7 = 27*y*x^2 + 828*y^2*x + 6277*y^3
?
a1 = 27; c = 27; zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
? a1 = 27; c = 27; zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
? z
%9 = x^4 - 1458*y^2*x^2 - 29808*y^3*x - 169479*y^4
? w
%10 = 108*y*x^3 + 4968*y^2*x^2 + 75324*y^3*x + 376280*y^4
?
?
a1 = 81; c = 9; zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
? a1 = 81; c = 9; zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
? z
%12 = x^5 - 2430*y^2*x^3 - 74520*y^3*x^2 - 847395*y^4*x - 3386520*y^5
? w
%13 = 405*y*x^4 + 24840*y^2*x^3 + 564930*y^3*x^2 + 5644200*y^4*x + 20889961*y^5
?
a1 = 243; c = 3; zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
? a1 = 243; c = 3; zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
? z
%15 = x^6 - 3645*y^2*x^4 - 149040*y^3*x^3 - 2542185*y^4*x^2 - 20319120*y^5*x - 62669883*y^6
? w
%16 = 1458*y*x^5 + 111780*y^2*x^4 + 3389580*y^3*x^3 + 50797800*y^4*x^2 + 376019298*y^5*x + 1098952052*y^6
?
?
a1 = 729; c = 1; zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
?
? a1 = 729; c = 1; zz = x * z - c * y * w ; ww = a * x * w + a1 * y * z + b * y * w; z = zz; w = ww;
?
? z
%18 = x^7 - 5103*y^2*x^5 - 260820*y^3*x^4 - 5931765*y^4*x^3 - 71116920*y^5*x^2 - 438689181*y^6*x - 1098952052*y^7
? w
%19 = 5103*y*x^6 + 469476*y^2*x^5 + 17795295*y^3*x^4 + 355584600*y^4*x^3 + 3948202629*y^5*x^2 + 23077993092*y^6*x + 55417244077*y^7
?
2187 * z^2 + 92 * z * w + w^2
( 3 * x^2 + 92 * x * y + 729 * y^2)^7
?
? 2187 * z^2 + 92 * z * w + w^2
%20 = 2187*x^14 + 469476*y*x^13 + 46911879*y^2*x^12 + 2892076488*y^3*x^11 + 122889105423*y^4*x^10 + 3807263630268*y^5*x^9 + 88688782583499*y^6*x^8 + 1578039270279536*y^7*x^7 + 21551374167790257*y^8*x^6 + 224815110103695132*y^9*x^5 + 1763324345027822661*y^10*x^4 + 10084047184857263688*y^11*x^3 + 39747900724268273397*y^12*x^2 + 96660945131267433924*y^13*x + 109418989131512359209*y^14
?
?
? ( 3 * x^2 + 92 * x * y + 729 * y^2)^7
%21 = 2187*x^14 + 469476*y*x^13 + 46911879*y^2*x^12 + 2892076488*y^3*x^11 + 122889105423*y^4*x^10 + 3807263630268*y^5*x^9 + 88688782583499*y^6*x^8 + 1578039270279536*y^7*x^7 + 21551374167790257*y^8*x^6 + 224815110103695132*y^9*x^5 + 1763324345027822661*y^10*x^4 + 10084047184857263688*y^11*x^3 + 39747900724268273397*y^12*x^2 + 96660945131267433924*y^13*x + 109418989131512359209*y^14
?
? 2187 * z^2 + 92 * z * w + w^2 - ( 3 * x^2 + 92 * x * y + 729 * y^2)^7
%22 = 0
?
t = w + 46 * z
t^2 + 71 * z^2
?
? t = w + 46 * z
%23 = 46*x^7 + 5103*y*x^6 + 234738*y^2*x^5 + 5797575*y^3*x^4 + 82723410*y^4*x^3 + 676824309*y^5*x^2 + 2898290766*y^6*x + 4865449685*y^7
?
?
?
? t^2 + 71 * z^2
%24 = 2187*x^14 + 469476*y*x^13 + 46911879*y^2*x^12 + 2892076488*y^3*x^11 + 122889105423*y^4*x^10 + 3807263630268*y^5*x^9 + 88688782583499*y^6*x^8 + 1578039270279536*y^7*x^7 + 21551374167790257*y^8*x^6 + 224815110103695132*y^9*x^5 + 1763324345027822661*y^10*x^4 + 10084047184857263688*y^11*x^3 + 39747900724268273397*y^12*x^2 + 96660945131267433924*y^13*x + 109418989131512359209*y^14
?
? t^2 + 71 * z^2 - ( 3 * x^2 + 92 * x * y + 729 * y^2)^7
%25 = 0
?
?
? t
%26 = 46*x^7 + 5103*y*x^6 + 234738*y^2*x^5 + 5797575*y^3*x^4 + 82723410*y^4*x^3 + 676824309*y^5*x^2 + 2898290766*y^6*x + 4865449685*y^7
?
? z
%27 = x^7 - 5103*y^2*x^5 - 260820*y^3*x^4 - 5931765*y^4*x^3 - 71116920*y^5*x^2 - 438689181*y^6*x - 1098952052*y^7
?
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=