Let $V$ be a vector space of dimension $n$ with basis $\{v_1,\cdots,v_n\}$.
Let $\phi$ be an n-alternating multilinear map and $A:V\rightarrow V$ is any map (matrix form) then we have to prove that
$\phi(Av_1,\cdots,Av_n)=\det(A) \phi(v_1,v_2,\cdots,v_n)$
I could do this for $n=2$ but could not generalize it..
$$\phi(Av_1,Av_2)=\phi(a_{11}v_1+a_{12}v_2,a_{21}v_1+a_{22}v_2)$$
$$=a_{11}a_{21}\phi(v_1,v_1)+a_{11}a_{22}\phi(v_1,v_2)+a_{12}a_{21}\phi(v_2,v_1)+a_{12}a_{22}\phi(v_2,v_2)$$
As $\phi$ is alternating $\phi(v_1,v_1)=\phi(v_2,v_2)=0$ and $\phi(v_2,v_1)=-\phi(v_1,v_2)$. So, we have
$\phi(Av_1,Av_2)=a_{11}a_{22}\phi(v_1,v_2)-a_{12}a_{21}\phi(v_1,v_2)=(a_{11}a_{22}-a_{12}a_{21})\phi(v_1,v_2)=\det(A)\phi(v_1,v_2)$
Now, i am having difficulty in generalizing this..
$$\det(A)\phi(v_1,v_2,\cdots,v_n)=\sum_{\sigma}sgn(\sigma)\Pi_{i} a_{i\sigma(i)}\phi(v_1,v_2,\cdots,v_n)$$
As $\phi$ is alternating we have $sgn(\sigma)\phi(v_1,v_2,\cdots,v_n)=\phi(v_{\sigma(1)},v_{\sigma(2)},\cdots,v_{\sigma(n)})$
So, we have $$\det(A)\phi(v_1,v_2,\cdots,v_n)=\sum_{\sigma}\Pi_{i} a_{i\sigma(i)}\phi(v_{\sigma(1)},v_{\sigma(2)},\cdots,v_{\sigma(n)})$$
I am not able to relate this to $\phi(Av_1,\cdots,Av_n)$.
See that $A=(a_{ij})$..
Please provide some hints