2

Evaluate $$ \int{\frac{(1+x^2)}{(1-x^2)\sqrt{1+x^2+x^4}}}dx $$ I substituted $x- \frac{1}{x} $ with u so $$-\int{\frac{du}{u\sqrt{u^2+3}}} $$ Now I put $u=\frac1t$ so $$\int{\frac{dt}{\sqrt{1+3t^2}}} $$

mathemather
  • 2,959

1 Answers1

3

HINT:

$$\text{Set }\int\left(1+\dfrac1{x^2}\right)dx=u\text{ so that }\dfrac{du}{dx}=\cdots$$

$$\text{in }\frac{(1+x^2)}{(1-x^2)\sqrt{1+x^2+x^4}}=\dfrac{1+\dfrac1{x^2}}{\left(x-\dfrac1x\right)\sqrt{\dfrac1{x^2}+1+x^2}}$$ and use $$\dfrac1{x^2}+x^2=\left(x-\dfrac1x\right)^2+2$$

For $\int\dfrac{du}{u\sqrt{u^2+3}}$

either set $u=\sqrt3\tan y$

or for $\int\dfrac{du}{u\sqrt{u^2+3}}=\int\dfrac{u\ du}{u^2\sqrt{u^2+3}}$ set $\sqrt{u^2+3}=v$