options:
A) $|f(x)|>1 $
B) $|f(x)|<1 $
C) $|f′(x)|>1 $
D) $|f′(x)|<1$
attempt:
I first tried using integration. $−1\le f′′(x)\le 1$
integrating from $0$ to $x$, $−x\le f′(x)−f′(0)\le x$
Again integrating from $0$ to $x$, $\frac{−x^2}{2}\le f(x)−f(0)−f′(0)x\le\frac{x^2}{2}$
at $x=1$, $−\frac{1}{2}\le f′(0)\le\frac{1}{2}$
from the equation, $−x\le f′(x)−f(0)\le x$ and by substituting the max value of $f'(0)$, $-x+0.5\le f′(x)\le x+0.5$
But this doesn't give me the correct answer.