Let $f(x,y,z)$ be the degree $6$ polynomial:
x^6 + 6*x^5 + 15*x^4 - 3*x^2*y^2 + 20*x^3 - 18*x^2*y - 6*x*y^2 - 2*y^3 - 12*x^2 - 36*x*y - 21*y^2 + 4*z^2 - 48*x - 72*y - 80
I am interested if the surface $f(x,y,z)=0$ is rational.
We have $f(u+v-1,u^2+v^2-3,u^3-v^3)=0$, which is rational parametrization.
I believe this is sufficient condition the surface to be rational by definition of rational variety.
Magma claims it is not rational.
Is it rational or not?
Magma online code http://magma.maths.usyd.edu.au/calc/:
K<x,y,z,t>:=ProjectiveSpace(Rationals(),3);
p:=x^6 + 6*x^5*t + 15*x^4*t^2 - 3*x^2*y^2*t^2 + 20*x^3*t^3 - 18*x^2*y*t^3 - 6*x*y^2*t^3 - 2*y^3*t^3 - 12*x^2*t^4 - 36*x*y*t^4 - 21*y^2*t^4 + 4*z^2*t^4 - 48*x*t^5 - 72*y*t^5 - 80*t^6;
S:=Surface(K,p);
IsRational(S : CheckADE := true); //return "false"