$$\underline{\text{Method 1}}$$
$$\text{S}=\displaystyle\sum_{r=0}^{n}\dfrac{(-1)^r}{\dbinom{n}{r}}$$
$$=\displaystyle\sum_{r=0}^{n}(-1)^r\dfrac{r!(n-r)!}{n!}$$
$$=\displaystyle\sum_{r=0}^{n}(-1)^r \dfrac{r!(n-r)!\color{blue}{(n-r+1+r+1)}}{n!}\color{red}{\times\dfrac{1}{(n+2)}}$$
$$=\displaystyle\sum_{r=0}^{n}\dfrac{1}{n!(n+2)}\left[(-1)^r\left\{r!(n-r+1)!+(n-r)!(r+1)!\right\}\right]$$
$$\color{blue}{=\displaystyle\sum_{r=0}^{n}\dfrac{1}{n!(n+2)}\left[\left\{T_{r} - T_{r+1}\right\}\right]}\tag{*}$$
where $T_{r}= (-1)^r r!(n-r+1)!$
Clearly, $(*)$ is a telescoping series. Evaluating it, we have,
$$\text{S}=(-1)^nT_{n+1}+T_{0}$$
$$=(-1)^n\dfrac{(n+1)!}{n!(n+2)} + \dfrac{(n+1)!}{n!(n+2)}$$
Since $n$ is even,
$$\color{red}{\therefore\text{S}=\boxed{2\dfrac{n+1}{n+2}}}$$
$$\underline{\text{Method 2}}$$
Consider the following Lemma.
Lemma : $$\color{brown}{\displaystyle \sum_{r=0}^k\dfrac{(-1)^r}{\dbinom{k}{r}}=0}$$
where $k$ is an odd positive integer.
Proof : $$\text{S}=\displaystyle \sum_{r=0}^k\dfrac{(-1)^r}{\dbinom{k}{r}}$$
$$=\displaystyle \sum_{r=0}^k\dfrac{(-1)^{k-r}}{\dbinom{k}{k-r}}$$
$$\displaystyle\color{blue}{\left(\because \sum_{r=0}^{n} f(r) = \sum_{r=0}^{n} f(n-r) \right)} $$
$$= -\displaystyle \sum_{r=0}^k\dfrac{(-1)^r}{\dbinom{k}{r}}$$
$$\implies \text{S}=-\text{S}$$
$$\implies \text{S}=0$$
This completes the proof of the Lemma.
Now, since $n$ is even, $n+1$ is odd.
Using the Lemma, we have,
$$\color{blue}{\displaystyle \sum_{r=0}^{n+1}\dfrac{(-1)^r}{\dbinom{n+1}{r}}=0} \tag{1}$$
Let,
$$\color{red}{\text{J}=\displaystyle \sum_{r=0}^n\dfrac{(-1)^r}{\dbinom{n}{r}}}\tag{2}$$
Operating $(1)+(2)$,
$$\implies \text{J}+0=\displaystyle \sum_{r=0}^n\dfrac{(-1)^r}{\dbinom{n}{r}} + \displaystyle \sum_{r=0}^{n+1}\dfrac{(-1)^r}{\dbinom{n+1}{r}}$$
$$=\displaystyle \sum_{r=0}^n\dfrac{(-1)^r}{\dbinom{n}{r}} + \displaystyle \sum_{r=0}^{n}\dfrac{(-1)^r}{\dbinom{n+1}{r}} +\dfrac{(-1)}{\dbinom{n+1}{n+1}}$$
$$=\displaystyle \sum_{r=0}^n\dfrac{(-1)^r}{\dbinom{n}{r}} + \displaystyle \sum_{r=0}^{n}\dfrac{(-1)^{n-r}}{\dbinom{n+1}{n-r}} -1 \quad \displaystyle\color{blue}{\left(\because \sum_{r=0}^{n} f(r)=\sum_{r=0}^{n} f(n-r)\right)}$$
$$=\displaystyle \sum_{r=0}^n\dfrac{(-1)^r}{\dbinom{n}{r}} + \displaystyle \sum_{r=0}^{n}\dfrac{(-1)^{r}}{\dbinom{n+1}{r+1}} -1$$
$$=\displaystyle \sum_{r=0}^n(-1)^r\left\{\dfrac{1}{\dbinom{n}{r}} + \dfrac{r+1}{n+1} \cdot \dfrac{1}{\dbinom{n}{r}}\right\} -1 \quad \displaystyle\color{red}{\left[\because \dbinom{n}{r}=\dfrac{n}{r}\dbinom{n-1}{r-1} \ \text{&} \ \dbinom{n}{r}=\dbinom{n}{n-r} \right]}$$
$$\implies \text{J} = \displaystyle\left(\dfrac{n+2}{n+1}\right) \sum_{r=0}^{n}\dfrac{(-1)^r}{\dbinom{n}{r}}+ \dfrac{1}{n+1} \sum_{r=0}^{n}\dfrac{(-1)^r\cdot r}{\dbinom{n}{r}} -1$$
$$\implies \text{J}+1 = \displaystyle\left(\dfrac{n+2}{n+1}\right) \text{J}+ \dfrac{1}{n+1} \underbrace{\color{#66f}{\sum_{r=0}^{n}\dfrac{(-1)^r\cdot r}{\dbinom{n}{r}}}}_{\huge{= \ \text{G} \ (\text{let})}} $$
$$\implies \text{J}+1= \displaystyle\left(\dfrac{n+2}{n+1}\right) \text{J}+ \dfrac{\text{G}}{n+1} \tag{3} $$
Now,
$$\text{G}=\displaystyle\sum_{r=0}^{n}\dfrac{(-1)^r\cdot r}{\dbinom{n}{r}}$$
$$=\displaystyle\sum_{r=0}^{n}\dfrac{(-1)^{n-r}\cdot (n-r)}{\dbinom{n}{n-r}}$$
$$=\displaystyle\sum_{r=0}^{n}\dfrac{(-1)^{r}\cdot (n-r)}{\dbinom{n}{r}}$$
$$=\displaystyle n\sum_{r=0}^{n}\dfrac{(-1)^{r}}{\dbinom{n}{r}} - \sum_{r=0}^{n}\dfrac{(-1)^{r}\cdot r}{\dbinom{n}{r}}$$
$$\implies \text{G}=n\cdot \text{J}-\text{G}$$
$$\implies\color{red}{\text{G}=\dfrac{\text{J}n}{2}} \tag{4}$$
From $(3)\ \text{&} \ (4)$,
$$\implies \text{J}+1= \displaystyle\left(\dfrac{n+2}{n+1}\right) \text{J}+ \dfrac{\text{J}n}{2(n+1)}$$
$$\color{green}{\therefore\text{J}=\boxed{2\dfrac{n+1}{n+2}}} \quad \square$$