Let $$\displaystyle I = -\int\frac{x-1}{\left(x+1\right)}\cdot \frac{1}{\sqrt{x^3+x^2+x}}dx = -\int\frac{(x^2-1)}{\left(x+1\right)^2\cdot \sqrt{x^3+x^2+x}}dx$$
So $$\displaystyle = -\int\frac{(x^2-1)}{(x^2+2x+1)\sqrt{x^3+x^2+x}}dx = -\int\frac{\left(1-x^{-2}\right)}{\left(x+\frac{1}{x}+2\right)\sqrt{x+\frac{1}{x}+1}}dx$$
Now Let $$\displaystyle \left(x+\frac{1}{x}+1\right) = t^2\;,$$ Then $$\displaystyle \left(1-\frac{1}{x^2}\right)dx = 2tdt$$
So we get $$\displaystyle I = -2\int\frac{1}{t^2+1}dt = -2\tan^{-1}(t)+\mathcal{C} = -2\left[\frac{\pi}{2}-\cot^{-1}(t)\right]+\mathcal{C}$$
Above we have used the formula $$\bullet \; \displaystyle \tan^{-1}(x)+\cot^{-1}(x) = \frac{\pi}{2}.$$
So we get $$\displaystyle I = \int\frac{1-x}{(1+x)\sqrt{x^3+x^2+x}}dx= 2\cot^{-1}\left(\frac{x^2+x+1}{x}\right)+\mathcal{C'}$$