$C_p\times C_p$ has $1+1+(p-1)=p+1$ subgroups of order $p$ (all of which $\cong C_p$), so it has $1+(1+p)+1=3+p$ subgroups totally.
But how many subgroups in $C_p\times C_p \times C_p\times C_p$? (its seems hard to count subgroups of order $p^2$ and order $p^3$)
Furthermore, could we easily point out how many subgroups which isomorphic to $C_p\times C_{p^2}$ in group $C_{p^2}\times C_{p^2}\times C_{p^2}$?
I only figure out how to find all order-p subgroups in the elementary-$p$ group:
For example in $C_p\times C_p \times C_p$: $p^3=x(p-1)+1\Leftrightarrow x=(p^2+p+1)$, so it has $p^2+p+1=(p-1)^2+C_3^1(p-1)+C_3^1$ order-$p$ subgroups in total. So there are 3 types order-p subgroups:
$\{(x,1,1)| x\in C_p\}$, $\{(x,x^{\alpha},1)| x\in C_p\}$, $\{(x,x^{\alpha},x^{\beta})| x\in C_p\}$, where $\alpha$ and $\beta$ $\in Aut {C_p}$