For a positive integer $n$ let $S(n) = \sum_{i=1}^{2^{n}-1} \frac 1i = 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+ \cdots +\frac{1}{2^n-1}.$
Then which of the following are true.
- (a) $S(100)\leq 100$.
- (b) $S(100)>100$.
- (c) $S(200)\leq 100$.
- (d) $S(200)>100$.
My attempt
For the upper bound $$\begin{align} S(n) &= 1 + \left( \frac 12 + \frac 13 \right) + \left( \frac 14 + \frac 15 + \frac 16 + \frac 17 \right) + \cdots + \left( \frac 1{2^{n-1}} + \frac 1{2^{n-1}+1} + \cdots + \frac 1{2^n-1} \right) \\ &< 1 + \left( \frac 12 + \frac 12 \right) + \left( \frac 14 + \frac 14 + \frac 14 + \frac 14 \right) + \cdots + \left( \frac 1{2^{n-1}} + \frac 1{2^{n-1}} + \cdots + \frac 1{2^{n-1}} \right) \\ &= \underbrace{1 + 1 + \cdots + 1}_{n\text{ times}} \\ &= n. \end{align}$$
So we get $S(n) < n$ (for $n > 1$), and in particular $S(100) < 100$.
Now I did not understand how to calculate a lower bound, or if there is any other method by which we can solve this.