For positive integers $n$,let $A_n=\frac{(n+1)+(n+2)+(n+3)+.....+(n+n)}{n}$,$B_n=[(n+1)(n+2)(n+3)....(n+n)]^{1/n}$.If $\lim_{n\to\infty}\frac{A_n}{B_n}=\frac{ae}{b}$ where $a,b\in \mathbb{N}$ and relatively prime. Find the value of $(a+b)$.
My try:
$$\lim_{n\to\infty}\frac{A_n}{B_n}=\lim_{n\to\infty}\frac{\frac{(n+1)+(n+2)+(n+3)+.....+(n+n)}{n}}{[(n+1)(n+2)(n+3)....(n+n)]^{1/n}}$$
But I could not solve and simplify it further.