If you plot the following function $$f(n) = \frac{(p_1+\ldots+p_{n})}{n} - \frac{(p_1+\ldots+p_{n-1})}{n-1}$$ you get a graph that is similar to $$f(x) = \frac{5}{4}\log(x) + \frac{1}{2}$$
From this we can state $$\frac{(p_1+\ldots+p_{n})}{n} - \frac{(p_1+\ldots+p_{n-1})}{n-1} \sim \frac{5}{4}\log(n) + \frac{1}{2}$$ $$(p_1+\ldots+p_{n}) - (p_1+\ldots+p_{n-1}) \sim \frac{5}{4}n\log(n) + \frac{1}{2}n$$ $$p_n \sim \frac{5}{4}n\log(n) + \frac{1}{2}n + \frac{(p_1+\ldots+p_{n-1})}{n-1}$$
Looking at the graph for $$\left|\frac{5}{4}n\log(n) + \frac{1}{2}n + \frac{(p_1+\ldots+p_{n-1})}{n-1} - p_n\right|$$ the maximum error seems to be $\log(n^2)^2$, which would be quite good for larger $n$'s (if it is indeed true)