0

I know how to prove the case when $\lim \limits_{n \to ∞}$$\left(\frac{1} {n^{p}}\right)$ if p>0 but $\sum_{i=1}^n k^p$ it is causing me some problems , and the problem does not give me any clue.

1 Answers1

2

Rewrite the sum as $$\frac1n\biggl(\sum_{i=1}^n\Bigl(\frac kn\Bigr)^p\biggr)$$ One gets an upper Riemann sum for the function $x^p$.

Bernard
  • 175,478