1

Here's the integral:

$$\int_{1}^{5}{\frac{\sqrt{x}}{\sqrt{6-x}+\sqrt{x}}dx}$$

tried rationalising the function:

$$\frac{\sqrt{x\left( 6-x \right)}-x}{6-2x}$$

which doesn't get me anywhere with substitution or integration by parts


I would appreciate if someone were to help me through hints/techniques (besides numerical methods).

inspd
  • 496

1 Answers1

2

Let $$\displaystyle I = \int_{1}^{5}\frac{\sqrt{x}}{\sqrt{6-x}+\sqrt{x}}dx.................(1)$$

Now Using $$\displaystyle \bullet \int_{a}^{b}f(x)dx = \int_{a}^{b}f(a+b-x)dx$$

So Replace $x\rightarrow (1+5-x) = (6-x)$ in equation $(1)$

So we get $$\displaystyle I = \int_{1}^{5}\frac{\sqrt{6-x}}{\sqrt{x}+\sqrt{6-x}}dx..........(2)$$

Now add above two equation, we get

$$\displaystyle 2I = \int_{1}^{5}\frac{\sqrt{x}+\sqrt{6-x}}{\sqrt{6-x}+\sqrt{x}}dx = \int_{1}^{5}1dx =\left[x\right]_{1}^{5}= 4$$

So we get $$\displaystyle \displaystyle I = \int_{1}^{5}\frac{\sqrt{x}}{\sqrt{6-x}+\sqrt{x}}dx= 2$$

juantheron
  • 53,015