Binomial Series Approach
Using the Binomial Theorem and negative binomial coefficients,
$$
\begin{align}
\left(s+s^2+s^3+s^4+s^5+s^6\right)^7
&=s^7\left(\frac{1-s^6}{1-s}\right)^7\\
&=s^7\sum_{k=0}^7\binom{7}{k}\left(-s^6\right)^k\sum_{j=0}^\infty\binom{-7}{j}(-s)^j\\
&=s^7\sum_{k=0}^7(-1)^k\binom{7}{k}s^{6k}\sum_{j=0}^\infty\binom{j+6}{j}s^j\tag1
\end{align}
$$
Using Cauchy Products, the coefficient of $s^n$ in $(1)$ is
$$
\sum_{k=0}^7(-1)^k\binom{7}{k}\binom{n-6k-1}{n-6k-7}\tag2
$$
Plug $n=14$ into $(2)$:
$$
\bbox[5px,border:2px solid #C0A000]{\binom{7}{0}\binom{13}{7}-\binom{7}{1}\binom{7}{1}=1667}\tag3
$$
The Sum in $\bf{(2)}$ represents a Polynomial
When $n\ge43$, $n-6k-1\ge0$ for all $k\le 7$. This means that
$$
\sum_{k=0}^7(-1)^k\binom{7}{k}\binom{n-6k-1}{n-6k-7} = \sum_{k=0}^7(-1)^k\binom{7}{k}\binom{n-6k-1}{6}
$$
which is an order $7$ repeated difference of a degree $6$ polynomial in $k$. Therefore, for $n\ge43$,
$$
\sum_{k=0}^7(-1)^k\binom{7}{k}\binom{n-6k-1}{n-6k-7}=0
$$
That is, for $n\ge43$, the coefficient of $x^n$ vanishes.