$\lim _{ n\rightarrow \infty }{ \prod _{ i=1 }^{ n }{ \frac { 2i-1 }{ 2i } } } $
Encountered this on the math textbook, couldn't solve it all day
$\lim _{ n\rightarrow \infty }{ \prod _{ i=1 }^{ n }{ \frac { 2i-1 }{ 2i } } } $
Encountered this on the math textbook, couldn't solve it all day
Denote $P_n=\prod_{i=1}^n \frac{2i-1}{2i}$ your product.
Denote $Q_n=\prod_{i=1}^n \frac{2i}{2i+1}$. Note that clearly $Q_n \ge P_n \ge 0$ and $P_n \cdot Q_n=\frac{1}{2n+1}$.
Thus, $0 \le P_n \le \frac{1}{\sqrt{2n+1}}$ holds for all $n$. Now, it should be clear what the limit is...