Prove $\displaystyle \frac{5^{125}-1}{5^{25}-1}$ is not a prime.
Some obvious thoughts:
$\displaystyle \frac{5^{125}-1}{5^{25}-1}={(5^{25})}^4+{(5^{25})}^3+{(5^{25})}^2+{5^{25}}+1$
UPD: A similar question: Prove that $\frac{ 5^{125}-1}{ 5^{25}-1}$ is a composite number