There is a theorem that states that
If $x_n>0$ and $\lim_\limits{n \to \infty } \frac{x_{n+1}}{x_n} = L$ then $\lim_\limits{n \to \infty} \sqrt[n]{x_n}
= L$.
For $x_n = x$ we get $\lim_\limits{n \to \infty} \sqrt[n]{x} = \lim_\limits{n \to \infty} \frac{x}{x} = 1.$
The theorem comes from Stolz-Cesaro and here is a proof:
$\lim_\limits{n \to \infty } \frac{x_{n+1}}{x_n} =e^{\lim_\limits{n \to \infty} \ln(\frac{x_{n+1}}{x_n})} = e^{\lim_\limits{n \to \infty} \ln(x_{n+1})-\ln(x_n)} = e^{\lim_\limits{n \to \infty} \frac{\ln(x_{n+1})-\ln(x_n)}{n+1-n} } = e^{\lim_\limits{n \to \infty} \frac{\ln x_n}{x}} = e^{\lim_\limits{n \to \infty} \ln \sqrt[n]{x_n} } = \lim_\limits{n \to \infty} \sqrt[n]{x_n} $.
But this is of course overly complicated. An alternative is $\lim_\limits{n \to \infty} \sqrt[n]{x} = x^{\lim_\limits{n \to \infty} \frac{1}{n} } = x^0 = 1$