A nice proof, Enjoy :)
Theorem:
Suppose ${\bf{v}}_1,{\bf{v}}_2,{\bf{v}}_3$ are 3 vectors in $\Bbb R^2$ such that ${\bf{v}}_1-{\bf{v}}_3$ and ${\bf{v}}_2-{\bf{v}}_3$ are linearly independent. Then for each ${\bf{v}}\in \Bbb R^2$ there exists a unique triple ${\bf{\lambda}}=(\lambda_1,\lambda_2,\lambda_3)$ such that
$${\bf{v}}=\lambda_1 {\bf{v}}_1+\lambda_2 {\bf{v}}_2+\lambda_3 {\bf{v}}_3\,\,\,\text{and}\,\,\,\lambda_1+\lambda_2+\lambda_3=1$$
Proof:
We have:
$$\begin{bmatrix}
{\begin{bmatrix}{\bf{v}}\end{bmatrix}_{2×1}} \\
1 \\
\end{bmatrix}=
\begin{bmatrix}
{\begin{bmatrix}{\bf{v}}_1\end{bmatrix}_{2×1}}&{\begin{bmatrix}{\bf{v}}_2\end{bmatrix}_{2×1}}&{\begin{bmatrix}{\bf{v}}_3\end{bmatrix}_{2×1}} \\
1&1&1 \\
\end{bmatrix}\begin{bmatrix}{\bf{\lambda}}\end{bmatrix}_{3×1}$$
This equation always has a unique solution because the above $3 \times 3$ matrix is invertable. We can simply show this as follows
$$c_1\begin{bmatrix}
{\begin{bmatrix}{\bf{v}}_1\end{bmatrix}_{2×1}} \\
1 \\
\end{bmatrix}+c_2\begin{bmatrix}
{\begin{bmatrix}{\bf{v}}_2\end{bmatrix}_{2×1}} \\
1 \\
\end{bmatrix}+c_3\begin{bmatrix}
{\begin{bmatrix}{\bf{v}}_3\end{bmatrix}_{2×1}} \\
1 \\
\end{bmatrix}=0\\
\Rightarrow c_1{\bf {v}_1}+c_2{\bf {v}_2}+c_3{\bf {v}_3}={\bf 0}\,\,\,\text{and}\,\,\,c_1+c_2+c_3=0\\
\Rightarrow c_1({\bf {v}_1}-{\bf {v}_3})+c_2({\bf {v}_2}-{\bf {v}_3})={\bf 0}\\
\Rightarrow c_1=c_2=0\,\, , \,\, c_3=0\,\,\,\square$$
Exercise 1:
The line segment ${\bf{v}}_1{\bf{v}}_2=\{{\bf{v}}\in \Bbb R^2:{\lambda}_3({\bf{v}})=0\}$
The line segment ${\bf{v}}_1{\bf{v}}_3=\{{\bf{v}}\in \Bbb R^2:{\lambda}_2({\bf{v}})=0\}$
The line segment ${\bf{v}}_2{\bf{v}}_3=\{{\bf{v}}\in \Bbb R^2:{\lambda}_1({\bf{v}})=0\}$
Exercise 2:
Identify these sets:
$P_3=\{{\bf{v}}\in \Bbb R^2:{\lambda}_3({\bf{v}})\gt 0\}\\\\
P_2=\{{\bf{v}}\in \Bbb R^2:{\lambda}_2({\bf{v}})\gt 0\}\\\\
P_1=\{{\bf{v}}\in \Bbb R^2:{\lambda}_1({\bf{v}})\gt 0\}$
Exercise 3:
The triangle ${\bf{v}}_1{\bf{v}}_2{\bf{v}}_3=P_1\cap P_2\cap P_3$
The End :)
We also have this theorem for n vectors (polygon). Scalers $\lambda_i\,\,(i=1,2,...,n)$ called Barycentric Coordinates.