How to prove $$\sum\limits_{n = 1}^\infty {\arctan \frac{{10n}}{{\left( {3{n^2} + 2} \right)\left( {9{n^2} - 1} \right)}}} = \ln 3 - \frac{\pi }{4}.$$
Add: Maybe we can follow this!
How to prove $$\sum\limits_{n = 1}^\infty {\arctan \frac{{10n}}{{\left( {3{n^2} + 2} \right)\left( {9{n^2} - 1} \right)}}} = \ln 3 - \frac{\pi }{4}.$$
Add: Maybe we can follow this!
\begin{align*}S&=\sum\limits_{n=1}^{\infty} \arctan \frac{10n}{(3n^2+2)(9n^2-1)} \\&= \sum\limits_{n=1}^{\infty} \arg \left(1+\frac{10in}{(3n^2+2)(9n^2-1)}\right)\\&= \arg \prod\limits_{n=1}^{\infty}\left(1+\frac{10in}{(3n^2+2)(9n^2-1)}\right)\\&= \arg \prod\limits_{n=1}^{\infty}\left(\frac{(3n^2+2)(9n^2-1)+10in}{27n^4\left(1+\frac{2}{3n^2}\right)\left(1-\frac{1}{9n^2}\right)}\right)\end{align*}
The products in the denominator $\displaystyle \prod\limits_{n=1}^{\infty}\left(1+\frac{2}{3n^2}\right)$ and $\displaystyle \prod\limits_{n=1}^{\infty}\left(1-\frac{1}{9n^2}\right)$ can be ignored as they are convergent and real.
So, \begin{align*}S&= \arg \prod\limits_{n=1}^{\infty}\left(\frac{(3n^2+2)(9n^2-1)+10in}{27n^4}\right)\end{align*}
Using the factorization of the numerator,
$$(3n^2+2)(9n^2-1)+10in = (n-i)(3n+i)(3n+i+1)(3n+i-1)$$ we get,
$$S = \arg \prod\limits_{n=1}^{\infty}\frac{\left(1+\frac{i}{3n}\right)\left(1+\frac{i+1}{3n}\right)\left(1+\frac{i-1}{3n}\right)}{\left(1+\frac{i}{n}\right)}$$
Using, $\displaystyle \frac{1}{\Gamma(z)} = ze^{\gamma z}\prod\limits_{n=1}^{\infty}\left(1+\frac{z}{n}\right)e^{-z/n}$ at $\displaystyle z = i,\frac{i}{3},\frac{i+1}{3},\frac{i-1}{3}$ we may rewrite it as,
$$S = \arg \frac{-\Gamma(i)}{\Gamma\left(\frac{i}{3}\right)\Gamma\left(\frac{i+1}{3}\right)\Gamma\left(\frac{i-1}{3}\right)}$$
On the other hand we have Gauss-Legendre Triplication Formula:
$\displaystyle \Gamma(3z) = \frac{1}{2\pi}3^{3z - \frac{1}{2}}\Gamma\left(z\right)\Gamma\left(z+\frac{1}{3}\right)\Gamma\left(z+\frac{2}{3}\right)$,
which at $z = \dfrac{i-1}{3}$ gives:
$$\Gamma\left(\frac{i-1}{3}\right)\Gamma\left(\frac{i}{3}\right)\Gamma\left(\frac{i+1}{3}\right) = 2\pi 3^{-i+\frac{3}{2}}\Gamma(i-1)$$
Hence, $$S = \arg \frac{-3^{i}\Gamma(i)}{\Gamma(i-1)} = \arg (3^{i}(1-i)) = \log 3 - \frac{\pi}{4}$$
Since $\arctan(x)=\arg(1+ix)$ and we can factor $$ 1+\frac{10in}{\left(3n^2+2\right)\left( 9n^2-1\right)} =\frac{\left(1-\frac in\right)\left(1+\frac i{3n-1}\right)\left(1+\frac i{3n+1}\right)\left(1+\frac i{3n}\right)}{1+\frac2{3n^2}} $$ we have that $$ \begin{align} &\arctan\left(\frac{10n}{\left(3n^2+2\right)\left( 9n^2-1\right)}\right)\\[6pt] &=\arctan\left(\frac1{3n-1}\right)+\arctan\left(\frac1{3n}\right)+\arctan\left(\frac1{3n+1}\right)-\arctan\left(\frac1n\right) \end{align} $$ Now this becomes a telescoping series: $$ \begin{align} &\sum_{n=1}^\infty\arctan\left(\frac{10n}{\left(3n^2+2\right)\left( 9n^2-1\right)}\right)\\ &=\lim_{m\to\infty}\sum_{n=1}^m\left[\arctan\left(\frac1{3n-1}\right)+\arctan\left(\frac1{3n}\right)+\arctan\left(\frac1{3n+1}\right)-\arctan\left(\frac1n\right)\right]\\ &=-\arctan(1)+\lim_{m\to\infty}\sum_{n=m+1}^{3m+1}\arctan\left(\frac1n\right)\\ &=-\arctan(1)+\lim_{m\to\infty}\sum_{n=m+1}^{3m+1}\left[\frac1n+O\left(\frac1{n^3}\right)\right]\\[6pt] &=\log(3)-\frac\pi4 \end{align} $$