I have Cauchy-Schwarz inequality prove your inequality
we have
\begin{align*}\dfrac{1}{n+1}+\dfrac{1}{n+2}+\cdots+\dfrac{1}{n+n}&\le\sqrt{n\left(\dfrac{1}{(n+1)^2}+\dfrac{1}{(n+2)^2}+\cdots+\dfrac{1}{(n+n)^2}\right)}\\
&<\sqrt{n\left(\dfrac{1}{n(n+1)}+\dfrac{1}{(n+1)(n+2)}+\cdots+\dfrac{1}{(n+n-1)(n+n)}\right)}\\
&=\sqrt{n\left(\dfrac{1}{n}-\dfrac{1}{2n}\right)}\\
&=\dfrac{\sqrt{2}}{2}
\end{align*}
EDIT If you must use induction, I think you must induction this following Stronger inequality
$$\dfrac{1}{n+1}+\dfrac{1}{n+2}+\cdots+\dfrac{1}{n+n}\le\dfrac{\sqrt{2}}{2}-\dfrac{1}{4n+1}$$
because we only prove this
$$\dfrac{\sqrt{2}}{2}-\dfrac{1}{4n+1}-\dfrac{1}{n+1}+\dfrac{1}{2n+1}+\dfrac{1}{2n+2}<\dfrac{\sqrt{2}}{2}-\dfrac{1}{4n+5}$$
we only prove
$$\dfrac{1}{4n+5}+\dfrac{1}{2n+1}<\dfrac{1}{2n+2}+\dfrac{1}{4n+1}$$
$$\Longleftrightarrow (4n+5)(2n+1)(4n+1)+(4n+5)(2n+1)(2n+2)-(4n+5)(2n+2)(4n+1)-(2n+1)(2n+2)(4n+1)>0$$
$$\Longleftrightarrow 3>0$$
It it clear