I have to show that $$\lim_{n\to\infty }\left(1+\frac{x}{n}\right)^n=e^x$$ for all $x\in\mathbb R$ using the fact that $$e=\lim_{n\to\infty }\left(1+\frac{1}{n}\right)^n.$$
I already showed that for all $q\in\mathbb Q$, $$\lim_{n\to\infty }\left(1+\frac{q}{n}\right)^n=e^q,$$ but I have problem to show the relation for $x\in\mathbb R$. My idea is to take a sequence of rational $(x_n)$ that converge to $x\in\mathbb R\backslash \mathbb Q$ (which exist), and thus
$$\lim_{n\to\infty }\left(1+\frac{x_m}{n}\right)^n=e^{x_m}\implies \lim_{m\to\infty }\lim_{n\to\infty }\left(1+\frac{x_m}{n}\right)^n=\lim_{m\to\infty }e^{x_m},$$ but now, how can I justify that $$\lim_{m\to\infty }\lim_{n\to\infty }\left(1+\frac{x_m}{n}\right)^n=\lim_{n\to\infty }\lim_{m\to\infty }\left(1+\frac{x_m}{n}\right)^n$$ and $$\lim_{m\to\infty }e^{x_m}=e^{\lim_{m\to\infty }x_m}.$$
(I can't use continuity since I'm not supposed to know that $f:x\mapsto e^x$ is continuous).