Show that, for a positive integer $n$, $$F\left(-\frac{n}{2},-\frac{n}{2}+\frac{1}{2};n+\frac{3}{2};-\frac{1}{3}\right)=\left(\frac{8}{9}\right)^n\frac{\Gamma\left(\frac{4}{3}\right)\Gamma\left(n+\frac{3}{2}\right)}{\Gamma\left(\frac{3}{2}\right)\Gamma\left(n+\frac{4}{3}\right)}.$$
I can identify the right hand side (using the definition of the Pochhammer symbol) with: $$\left(\frac{8}{9}\right)^n\frac{\Gamma\left(\frac{4}{3}\right)\Gamma\left(n+\frac{3}{2}\right)}{\Gamma\left(\frac{3}{2}\right)\Gamma\left(n+\frac{4}{3}\right)}=\left(\frac{8}{9}\right)^n\frac{\left(\frac{3}{2}\right)_n}{\left(\frac{4}{3}\right)_n},$$ and get an expression for this in terms of factorials, but I'm not sure how to simplify the left hand side - it gets quite messy!