Prove: ${n\choose 0}{m\choose k}+{n\choose 1}{m\choose {k-1}}+...+{n\choose k}{m\choose 0}={{m+n}\choose k}$
Is it possible to use Pascal's identity or writing binomial coefficients with factorials?
Prove: ${n\choose 0}{m\choose k}+{n\choose 1}{m\choose {k-1}}+...+{n\choose k}{m\choose 0}={{m+n}\choose k}$
Is it possible to use Pascal's identity or writing binomial coefficients with factorials?