0

Why does $\lim_{x \rightarrow 0}\frac{e^x -1}{x} = \lim_{x \rightarrow 0}\frac{x}{e^x -1}=1 $ ?

1 Answers1

0

Use L'Hopital's Rule:

$$\lim_{x\rightarrow 0}\frac{e^{x}-1}{x} = \lim_{x\rightarrow 0}\frac{\frac{d}{dx}e^{x}-1}{\frac{d}{dx}x} = \lim_{x\rightarrow 0}e^{x} \rightarrow 1$$

$$\lim_{x\rightarrow 0}\frac{x}{e^{x}-1} = \lim_{x\rightarrow 0}\frac{\frac{d}{dx}x}{\frac{d}{dx}e^{x}-1} = \lim_{x\rightarrow 0}\frac{1}{e^{x}} \rightarrow 1$$

user43395
  • 103