I am trying to prove that
$$m \times a + n \times a = (m + n) \times a$$
while $m, n \in N$ and $a,b \in (Z, +, \times)$.
This is what I have got:
$a \times 0 = 0$ $\Rightarrow$ $a \times 0 + a \times 0 = a \times 0$, because $0 + 0 = 0$
assumption: $\underbrace{a + a + ... + a}_{\text{m}} = m \times a$
induction: $\underbrace{a + a + ... + a}_{\text{m}} + a = (m + 1) \times a$
therefore: $m \times a + a = (m + 1) \times a$ $\Rightarrow$ $m \times a + 1 \times a = (m + 1) \times a$, because $a \times 1 = a$ $\Rightarrow$ $m \times a + n \times a = (m + n) \times a$
is this right ?
is this right ?
– Filip Sulik Nov 15 '15 at 20:53