Can the following case of the Meijer G-function $$ G_{2,3}^{3,1}\left(z\left|\begin{smallmatrix}0,1\\ 0,0,0\end{smallmatrix}\right.\right) $$ be expressed more explicitly (in terms of other special functions, but involving no infinite integrals)? This question seems to be related to this one, this one, and this one.
Asked
Active
Viewed 490 times
1 Answers
2
With some help from Mathematica: $$G_{2,3}^{3,1}\left(z\left| \begin{smallmatrix} 0,1 \\ 0,0,0 \\ \end{smallmatrix} \right.\right) = -2 z \, {_3F_3}\left(\begin{smallmatrix}1,1,1\\2,2,2\end{smallmatrix}\middle|\,z\right)-\frac{1}{2} \frac{\partial^2}{\partial t^2}\left.{_1F_1}\left(\begin{smallmatrix}t\\1\end{smallmatrix}\middle|\,z\right)\right|_{t=0}+ \left(\operatorname{Ei}(z)+\tfrac{1}{2}\ln\left(\tfrac1z\right)\right)\left(\gamma+\ln(z)\right)-\frac{\gamma}{2}\ln (z)-\frac{\gamma^2}{2}+\frac{\pi ^2}{4}.$$
user153012
- 12,240
FunctionExpand[MeijerG[{{0}, {1}}, {{0, 0, 0}, {}}, z]]Mathematica command. – user153012 Dec 15 '15 at 20:51